
1

© H. Kopetz 10/23/2003

An Outline of a Course on
Safety-Critical Embedded Systems

H. Kopetz
TU Vienna

October 2003

2

© H. Kopetz 10/23/2003

Why a Course on Safety-Critical Systems?

♦ The number of safety-critical computer systems is on the increase
(e.g., X-by-wire, Nuclear, Medical, etc.).

♦ State of the Art Design is demanded by society:
Otherwise Contributory Negligence

♦ Precise specification and assessment of all assumptions is a
requirement--Integration of diverse viewpoints.

♦ Every Design Decision must be substantiated by rational arguments.
♦ Rare-event behavior at the focus of interest--arguments must stand up

versus the 10-9 failures/hour challenge.
♦ Justification vis-à-vis a Certification Agency

Challenging topic for an advanced academic course.

3

© H. Kopetz 10/23/2003

Some of the Challenges

System Perspectives

♦ The 10-9 Challenge
♦ The Process of Abstracting
♦ Physical Hardware Faults
♦ Design Faults
♦ Human Failures

4

© H. Kopetz 10/23/2003

The 10-9 Challenge
♦ The system as a whole must be more reliable than any one of its

components: e.g., System Dependability 1 FIT--Component
dependability 1000 FIT (1 FIT: 1 failure in 109 hours)

♦ Architecture must support fault-tolerance to mask component
failures

♦ System as a whole is not testable to the required level of
dependability.

♦ The safety argument is based on a combination of experimental
evidence about the expected failure modes and failures rates of
fault-containment regions (FCR) and a formal dependability
model that depicts the system structure from the point of view of
dependability.

5

© H. Kopetz 10/23/2003

The Process of Abstracting

♦ The behavior of a safety-critical computer system must be
explainable by a hierarchically structured set of behavioral
models, each one of them of a cognitive complexity that
can be handled by the human mind.

♦ Establish a clear relationship between the behavioral
model and the dependability model at such a high level
of abstraction that the analysis of the dependability model
becomes tractable.

♦ From the dependability point of view, the future unit of
hardware failure is considered to be a complete chip.

6

© H. Kopetz 10/23/2003

ALARP--Technology vs. Economy vs. Legal

Intolerable
risk level

Broadly
acceptable region

The ALARP region
“As low as
reasonably practicable”

Risk cannot be
justified

assement of risk reduction
versus cost

cost of reduction would
exceed improvement gained

No need for detailed working
to demonstrate ALARP

Level of Risk

Negligible

7

© H. Kopetz 10/23/2003

Example: Nuclear Plant Safety

There is a limit for an intolerable risk above which the operation of
a nuclear plant would not be allowed. Risk reduction is sought as
long as it is economically reasonable (ALARP).
The ALARP principle rests on the assumption that marginal
improvements in safety can be compared with the associated
marginal costs. The method rests on probabilistic analysis.
There is a difficulty with software, because software failure
occurrences are hard to predict.

8

© H. Kopetz 10/23/2003

Zero Failure Rate Software?

♦ Is the claim of “zero failure-rate software” achievable
and assessable?

♦ If the “zero failure-rate software route” is taken, than the
first software failure invalidates the argument.

♦ Experience has shown that it is highly probable that
software (and even hardware) is not free of design faults.

♦ Scientifically based statements-5/hour.

9

© H. Kopetz 10/23/2003

Panel Discussion at WORDS 03 in Capri

Research Challenges for the ORDS (Object-Orientend Real-
Time Dependable Systems) Community in the Coming Years?
♦ Integration difficult, because every community defines its

own basic concepts
♦ Communication and Education difficult, because there is

no standard set of definitions for fundamental concepts
(compare physics)

♦ More Basic Research badly needed in order to achieve a
unification of concepts and mechanisms (e.g., DSOS)

10

© H. Kopetz 10/23/2003

Course Organisation

♦ Start with establishing common concepts--DSOS
Conceptual Model.

♦ Course is organized along design principles.
♦ Students must read the relevant literature before the

respective lecture. Course material consists of a list of
selected references--no textbook available.

♦ Students are expected to actively contribute towards the
objective of the course.

11

© H. Kopetz 10/23/2003

Design Principles

1. Regard the Safety Case as a Design Driver
2. Start with a Precise Specification of the Design Hypotheses
3. Ensure Fault-Containment and Error Containment
4. Establish a Consistent Notion of Time and State
5. Partition the System along well-specified LIFs
6. Make Certain that Components Fail Independently
7. Follow the Self-Confidence Principle
8. Hide the Fault-Tolerance Mechanisms
9. Design for Diagnosis
10. Create an Intuitive and Forgiving Man-Machine Interface
11. Record Every Single Anomaly
12. Provide a Never Give-Up Strategy

12

© H. Kopetz 10/23/2003

Regard the Safety Case as a Design Driver
♦ A safety case is a set of documented arguments in order to

convince experts in the field (e.g., a certification authority) that
the provided system as a whole is safe to deploy in a given
environment.

♦ The safety case, which considers the system as whole,
determines the criticality of the computer system and analyses the
impact of the computer-system failure modes on the safety of the
application.

♦ The distributed computer system should be structured such that
the required experimental evidence can be collected with
reasonable effort and that the dependability models that are
needed to arrive at the system-level safety are tractable.

♦ The safety case should be regarded as a design driver since it
establishes the critical failure modes of the computer system.

13

© H. Kopetz 10/23/2003

Start with a Precise Specification of the Design Hypotheses

The design hypotheses is a statement about the assumptions that are
made in the design of the system. Of particular importance for safety
critical real-time systems is the fault-hypotheses: a statement about the
number and types of faults that the system is expected to tolerate:
♦ Determine the Fault-Containment Regions (FCR): A fault-

containment region (FCR) is the set of subsystems that share one or
more common resources and that can be affected by a single fault.

♦ Specification of the Failure Modes of the FCRs and their
Probabilities

♦ Be aware of Scenarios that are not covered by the Fault-Hypothesis

14

© H. Kopetz 10/23/2003

Fault Isolation

♦ The immediate consequences of a fault must be
isolated to within a well-defined region, the fault
containment region.

♦ Fault-Containment Regions must fail
independently.

♦ Consider spatial proximity.
♦ Design Faults?

15

© H. Kopetz 10/23/2003

Ensure Error Containment
In a distributed computer system the consequences of a fault, the
ensuing error, can propagate outside the originating FCR either by an
erroneous message or by an erroneous output action of the faulty node
to the environment that is under the node’s control.
♦ A propagated error invalidates the independence assumption.
♦ The error detector must be in different FCR than the faulty unit.
♦ Distinguish between architecture-based and application-based error

detection
♦ Distinguish between error detection in the time-domain and error

detection in the value domain.

16

© H. Kopetz 10/23/2003

Establish a Consistent Notion of Time and State

A system-wide consistent notion of a discrete time is a prerequisite for
a consistent notion of state, since the notion of state is introduced in
order to separate the past from the future:
“The state enables the determination of a future output solely on the
basis of the future input and the state the system is in. In other word,
the state enables a “decoupling” of the past from the present and
future. The state embodies all past history of a system. Knowing the
state “supplants” knowledge of the past. Apparently, for this role to be
meaningful, the notion of past and future must be relevant for the
system considered.” (Taken from Mesarovic, Abstract System Theory, p.45)

Fault-masking by voting requires a consistent notion of state in
distributed Fault Containment Regions (FCRs).

17

© H. Kopetz 10/23/2003

Partition the System along well-specified LIFs

“Divide and Conquer” is a well-proven method to master
complexity.
A linking interface (LIF) is an interface of a component that is
used in order to integrate the component into a system-of-
components.
♦ We have identified only two different types LIFs:

• time sensitive LIFs and
• not time sensitive LIFs

♦ Within an architecture, all LIFs of a given type should have
the same generic structure

♦ Avoid concurrency at the LIF level

18

© H. Kopetz 10/23/2003

The LIF Specification hides the Implementation

Component

Operating System

Middleware

Programming Language

WCET

Scheduling

Memory Management

Etc.

Linking
Interface

Specification

(In Messages,
Out Messages,

Temporal,
Meaning--
Interface
Model)

19

© H. Kopetz 10/23/2003

Make Certain that Components Fail Independently

Any dependence of FCR failures must be reflected in the
dependability model--a challenging task!
Independence is a system property. Independence of FCRs can
be compromised by
♦ Shared physical resources (hardware, power supply, time-

base, etc.)
♦ External faults (EMI, heat, shock, spatial proximity)
♦ Design
♦ Flow of erroneous messages

20

© H. Kopetz 10/23/2003

Conclusion

♦ Safety-critical computer systems are penetrating into many
applications.

♦ Some design decision require a delicate balance between
technical, economic and legal parameters.

♦ Managers must trust the recommendations made by
technical experts.

♦ Society has the right to expect that our academic
institutions provide the proper training in the state of the
art for these technical experts.

	An Outline of a Course on Safety-Critical Embedded Systems
	Why a Course on Safety-Critical Systems?
	Some of the Challenges
	The 10-9 Challenge
	The Process of Abstracting
	ALARP--Technology vs. Economy vs. Legal
	Example: Nuclear Plant Safety
	Zero Failure Rate Software?
	Panel Discussion at WORDS 03 in Capri
	Course Organisation
	Design Principles
	Regard the Safety Case as a Design Driver
	Start with a Precise Specification of the Design Hypotheses
	Fault Isolation
	Ensure Error Containment
	Establish a Consistent Notion of Time and State
	Partition the System along well-specified LIFs
	The LIF Specification hides the Implementation
	Make Certain that Components Fail Independently
	Conclusion

